知识库分类索引
技术分类
厂商分类

基于人工神经网络的机器翻译

基于人工神经网络的机器翻译( Neural Machine Translation )兴起于2013年,其技术核心是一个拥有海量结点(神经元)的深度神经网络,可以自动的从语料库中学习翻译知识。一种语言的句子被向量化之后,在网络中层层传递,转化为计算机可以“理解”的表示形式,再经过多层复杂的传导运算,生成另一种语言的译文。实现了 “理解语言,生成译文”的翻译方式。这种翻译方法最大的优势在于译文流畅,更加符合语法规范,容易理解。相比之前的翻译技术,质量有“跃进式”的提升。

目前,广泛应用于机器翻译的是长短时记忆(LSTM,Long Short-Term Memory)循环神经网络(RNN,Recurrent Neural Network)。该模型擅长对自然语言建模,把任意长度的句子转化为特定维度的浮点数向量,同时“记住”句子中比较重要的单词,让“记忆”保存比较长的时间。该模型很好地解决了自然语言句子向量化的难题,对利用计算机来处理自然语言来说具有非常重要的意义,使得计算机对语言的处理不再停留在简单的字面匹配层面,而是进一步深入到语义理解的层面。

代表性的研究机构和公司包括,加拿大蒙特利尔大学的机器学习实验室,发布了开源的基于神经网络的机器翻译系统GroundHog。2015年,百度发布了融合统计和深度学习方法的在线翻译系统,Google也在此方面开展了深入研究。

查看更多相关新闻
    暂无相关新闻
查看更多相关视频
    暂无相关视频
基于人工神经网络的机器翻译相关厂商
暂无相关厂商

分隔