苹果公司研究显示,Claude、Gemini、DeepSeek-R1等大型推理模型在复杂问题上表现令人失望。研究发现,在低复杂度任务中,常规模型优于推理模型;中等复杂度时推理模型稍好但耗费10-50倍计算资源;高复杂度下两者均失效。专家认为这些模型只是复杂的模式匹配,缺乏真正推理能力。对冲基金CEO更倾向预测性AI,研究者建议结合符号AI与神经网络构建神经符号AI系统。